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Abstract

Obesity is the focus of multiple lines of inquiry that have – together and separately – produced many deep
insights into the physiology of weight gain and maintenance. We examine three such streams of research and
show how they are oriented to obesity intervention through multilevel integrated approaches. The first research
programme is concerned with the genetics and biochemistry of fat production, and it links metabolism,
physiology, endocrinology and neurochemistry. The second account of obesity is developmental and draws
together epigenetic and environmental explanations that can be embedded in an evolutionary framework. The
third line of research focuses on the role of gut microbes in the production of obesity, and how microbial activities
interact with host genetics, development and metabolism. These interwoven explanatory strategies are driven by
an orientation to intervention, both for experimental and therapeutic outcomes. We connect the integrative and
intervention-oriented aspects of obesity research through a discussion of translation, broadening the concept to
capture the dynamic, iterative processes of scientific practice and therapy development. This system-oriented
analysis of obesity research expands the philosophical scrutiny of contemporary developments in the biosciences
and biomedicine, and has the potential to enrich philosophy of science and medicine.

Introduction
Prediction and control of biological systems are driving
forces of the life sciences. While varying degrees of
these capabilities have been generated in every branch
of biology throughout its history, the contemporary
post-genomic period has seen a remarkable surge of
optimism about the possibility of achieving fine-grained
control of complex interactions of biological systems.
One of the many physiological systems that appears to
call out for systems-based control-oriented inquiry is
that of weight gain, loss and maintenance in animal
bodies, particularly those of humans. Our foci in this
paper are how two aspects of biological practice – inter-
vention and integration – orient and configure fields of
scientific inquiry and help us understand translational
practice better. We suggest that these features are inse-
parable in ongoing research activity: to intervene suc-
cessfully in complex systems requires a highly

integrated, multi-level understanding that can be trans-
ferred to new contexts. Obesity research casts consider-
able light on this claim and illustrates the difficulties in
doing so. It also offers new avenues of investigation for
the philosophies of science and medicine.
Obesity science tackles the problems and causes of

excess weight from a number of directions. The most
well known stream of research is concerned with bio-
chemical feedback loops and their genetic bases as well
as behavioural contributions. Another rapidly developing
body of research focuses on developmental and epige-
netic causes of obesity and sees pregnancy and early
childhood as major periods of intervention. A third,
even newer avenue of research is concerned with the
role microbes in the gut play in obesogenesis, and what
the interventions are that might alleviate such contribu-
tions. What marks all these bodies of research is their
dynamic and system-wide conception of obesity, and the
integrated conceptual and methodological apparatuses
that are brought to bear on the phenomenon of excess
fat storage. But of equal relevance is the limited integra-
tion amongst these three research programmes, and the
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obstacles to their translation into effective therapies. In
what follows, we outline these different perspectives on
obesity, show how they overlap, and what their achieve-
ments are regarding the identification of causal relation-
ships and the development of interventions in the
process of obesogenesis. We will conclude with a discus-
sion of the relationships between intervention-based and
integrative research, and what these relationships mean
for more common understandings of basic and applied
research, as well as for systems-oriented strategies of
inquiry. Our analysis suggests further lines of inquiry
that could be pursued fruitfully by philosophers and
practitioners of science and medicine, who might be
able to work together on areas of common interest.

Fat and obesity
Fat is the colloquial term for adipocytes or fat cells,
which form two different types of adipose tissue: white
and brown. Brown fat is a heat-producing tissue that
costs the organism calories to maintain [1]. White fat is
a fuel storage organ, and it is this fat that is the concern
in obesity research. White fat cells are stored as adipose
tissue both subcutaneously and around organs, with dif-
ferential health effects [2]. Obesity is a difficult term to
define. It refers to excessive and unhealthy amounts of
fat (rather than body weight per se), and is measured by
a variety of means, all of which have practical and theo-
retical problems [3,4]. But more problematic than the
measuring issues are the difficulties of justifying distinc-
tions between ‘excessive’ amounts of fat, mere over-
weight, and normal weight. Cultural factors, life history
fluctuations, and health status all influence whether a
particular person might be considered overweight or
obese in a particular situation [5,6].
Despite such complications, obesity was declared a

major health problem by the World Health Organization
as early as 1985. Although excess fat storage is not a
contagious disease in a literal sense, the epidemic meta-
phor is used to capture the rapidly rising levels of obe-
sity and overweight in many wealthy nations [5,7]; see
[8] for a problematization of this metaphor. Obesity is
associated with numerous health consequences, includ-
ing type 2 diabetes, hypertension, cardiovascular disease
and cancers [9]. It may be both a cause and a result of
these conditions. Psychological effects, such as depres-
sion, have been identified [10], and many social effects
of obesity are also well catalogued [11,12]. There may
even be environmental costs to obesity [13]. Recognition
of these issues has made obesity into a compelling
social, medical and scientific problem. As such, it cries
out for effective interventions, and this need orients and
drives all obesity-related research.
Even though current weight trends are necessarily cor-

related with ‘obesogenic’ environments (calorie-rich diet

and low-activity lifestyle), these factors are not enough
to explain obesity [14,5]. Weight-gaining predispositions
(i.e., the differences between individuals) are considered
by geneticists to be highly heritable, with as much as
70%-80% of weight variation attributed to genetic factors
[3,15,16]. The only trait with higher heritability in
humans is height. Most such highly heritable pheno-
types, however, show substantial ‘missing heritability’.
This means that the combined effect of all identified
genetic variants associated with the trait or disease can
account for only a very small percentage of the differ-
ence. In the case of obesity, known genetic factors
account for less than five percent of its heritability [17].
In addition, genetic causes cannot explain the massive
increase of obesity from one generation to the next, nor
its occurrence within a single generation as has hap-
pened recently around the world. Accordingly, scientists
and public health officials recognize that there must be
a complex array of factors at play in weight gain and
obesity, ranging from environmental to genetic and
developmental contributions, and at every level of biol-
ogy in between.

From genetics and biochemistry to physiological-
behavioural systems
Throughout the twentieth century, researchers from var-
ious disciplines have conceived of weight maintenance
dynamically, as the consequence of a system that con-
nects the brain (the hypothalamus in particular), fat tis-
sue and unknown circulating signalling molecules
[18-20]. Homeostasis is the presumed default of such a
system, with obesity the result of its malfunction. As
obesity research embraced genetic analyses, geneticists
armed with biochemical knowledge, and spurred on by
epidemiological data about obesity increases, hoped
initially that malfunctions in weight homeostasis could
be investigated through single-gene defects [21,22]. Sel-
dom, however, did researchers conceive of obesity as a
single phenotype; nor did they think it had a single
cause. Already in the early 1990s, geneticists were able
to argue that human obesity genotypes will be complex
multigenic systems with networks of gene-gene and
gene-environment interactions. ... The growing number
of obesity-related or obesity-causing genes does not
bode well for the single gene hypothesis [23,24].
Early approaches to finding the specific genetic var-

iants underpinning obesity relied on candidate-gene
approaches that were based on mouse genetics and live-
stock breeding [25]. Candidate genes are genes that are
predicted on the basis of functional knowledge to have
an involvement in phenotypic traits of interest.
Although there are limitations to such approaches when
employed in the service of understanding complex mul-
tifactorial traits [26], such studies have nevertheless

O’Malley and Stotz Philosophy, Ethics, and Humanities in Medicine 2011, 6:2
http://www.peh-med.com/content/6/1/2

Page 2 of 14



proved highly fruitful in obesity research. Through this
strategy, researchers identified and characterized the
first of the five known obesity-associated genes in mice,
the agouti gene, in 1992. Agouti protein interrupts mel-
anocortin reception in the brain (where feeding beha-
viour is regulated), and this results in excessive eating
(hyperphagia) and obesity, as well as yellow coat colour
[27,28].
Arguably an even more important finding was that of

the Lep gene and its product leptin, from the Greek for
‘thin’, The recessive gene mutation (Lepob – ob for obe-
sity) had been linked to obesity and type 2 diabetes
since the early 1950s, as was the mutant db of the leptin
receptor gene (Leprdb) [29]. Studies of mutant ob/ob
mice and db/db mice, in which the circulatory system of
ob/ob mice were partly joined to lean mice, found that
obesity levels in the ob/ob mice decreased. Conse-
quently, the ob/ob mice were thought to lack circulating
molecules for leanness [30]. But the db/db mice did not
become leaner when their circulatory systems were con-
joined with those of non-obese mice, and it was con-
cluded they had a defect in the reception of this
circulating molecule [31,32]. It took the location and
cloning of the ob gene to work out what its product was
and how it worked in relation to the receptor [33-35,29].
The functional copy of the Lep gene was found to

encode the hormone leptin, a signalling molecule that is
produced primarily in fat cells. The Lepr gene was iden-
tified as coding for the leptin receptor, which is located
in the hypothalamic region of the brain as well as in
other organs where it binds with leptin [36,37]. Despite
being understood as responsible for a monogenic Men-
delian disorder, the ob gene rapidly became known for
its complicated involvement in the production of obe-
sity. Early researchers thought that the primary function
of Leptin was to make or keep organisms thin, and
companies fought to win the licensing rights for leptin-
based products [38,39]. Mutant leptin genes in humans
result in morbidly obese individuals who are commonly
glucose intolerant and insulin resistant [40]. Such leptin
disorders are, however, rare. Leptin is now understood
more generally as just one of the key factors in the
homeostatic regulation of weight in mice and humans.
When food is scarce and fat stores decrease, leptin levels
are reduced, priming the organism for starvation condi-
tions [41,42]. Once food is again available and fat stores
replenished, leptin levels rise and inhibit the starvation
response. Leptin appears to be informing the brain
about the status of fat in the body, thereby connecting
feeding behaviour, metabolism and the endocrine system
to the organism’s nutritional condition [43,44]. Leptin
receptors connect to both feeding stimulus and feeding
inhibition neurons in the melanocortin pathway of the
hypothalamus. But in obese individuals, high leptin

levels – promoted by fat cells, glucose, insulin and glu-
cocorticoid levels – do not have the same effect on
appetite and fat production due to poorly understood
leptin resistance [45]. Because of this resistance, leptin
replacement therapies work only on those with congeni-
tal leptin deficiences in leptin production or reception,
and not on the obese with genetically standard leptin
responses. The feedback loop becomes a ‘vicious spiral’
of ever-increasing weight gain and decreasing leptin sen-
sitivity, especially in the context of a high-fat diet [46].
Leptin research can be seen as an exemplar of the

development of an integrated molecular physiological
approach. The numerous dynamic roles leptin plays in
metabolism mean that its initial modelling as an anti-
obesity agent has given way to a much more systemic
one as an ‘integrator of neuroendocrine function’ [47].
The early leptin focus broadened rapidly to include a
panoply of discoveries of other mechanisms and path-
ways, such as neuropeptides and receptors involved in
short- and long-term feeding responses, as well as gas-
trointestinal signalling peptides [48,49]. In these inter-
linked systems, leptin plays a major but not the only
role in appetite control and metabolic function.
Increasing knowledge about leptin has also led to the

reconceptualization of the role of white fat cells from
inert storage devices to highly active endocrine organs
[2]. The secretions of these cells (including about 50
other proteins, collectively called ‘adipokines’, plus other
secreted substances) communicate throughout the
whole body. They are receptors that interact with a vast
range of compounds and are involved in almost every
bodily process from reproduction to metabolism and
immunological response [50]. Adipokines affect glucose
levels, appetite and the function of many organs [51]. In
obese individuals, adipose tissue is the largest and most
highly variable endocrine organ in the body, and its very
distribution pattern (android or gynoid) has major
health implications. There is considerable evidence that
adipocytes are dysfunctional in obese organisms, and
many obesity researchers are convinced that progress
will depend on understanding adipose tissue as a devel-
oping, regulatory and metabolizing endocrine system
[52]. Brown adipose tissue, long thought irrelevant to
mature human physiology, is now known from a
broader system perspective to have a role in how adi-
pose tissue is maintained in obesity [53]. White adipose
tissue is composed of more than adipocytes, and also
includes macrophages, endothelial cells and fibroblasts
[54]. Some of these cells (possibly adipocytes them-
selves) produce insulin-desensitizing inflammatory mole-
cules, and a number of researchers now believe that
obesity is a low-grade inflammatory disease that causes
diabetes [55,50,56]. But little so far is known about
pathways and mechanisms for adipose tissue-derived
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inflammation and its relationships to insulin and leptin
resistance. Further exploration of this connection seems
bound to make the obesity story yet more complex.
As part of the attempt to generate a system-wide

account of obesity, genome-wide linkage and genome-
wide association studies search not for biologically
implicated candidate genes, but for particular markers
across the genome that are linked to disease [57,15].
This shift to a bioinformatically driven analysis, often
thought of as discovery-driven, has produced numerous
associations of genes or genetic regions with obesity,
especially in groups with high rates of obesity or in less
obesogenic environments [58]. Subsequent efforts to
identify mechanisms and biochemical pathways between
genes and obesity phenotypes have, however, been slow
and halting [59]. The FTO gene is the most robust find-
ing of genome-wide approaches, but it is associated with
only a few kilograms of weight gain, and studies of its
functional role have only just begun [60,61].
The quest for a full understanding of obesity will not

be satisfied by genetic and biochemical explanations,
however, even if these are inevitably woven into neuro-
chemical and behavioural explanatory accounts [62].
This is particularly the case because of the limited effec-
tiveness of pharmacological interventions in obese adults
and because of the alarming rise in rates of childhood
obesity [63]. Some of the genes implicated in obesity
phenotypes, such as the FTO gene, may also play a role
in epigenetic processes that through effects on satiety
regulation can result in increased fat stores [64]. This
broader dimension, of epigenetic and developmental
analyses of the differential expression of genes, is
increasingly important in the investigation of fat produc-
tion across the lifetimes of individuals and families.

From evolutionary to developmental and
epigenetic aspects of obesity
Genetic approaches to obesity have been instrumental to
early evolutionary explanations for the rise in obesity
level in Western societies. The first such theory was the
‘thrifty gene hypothesis’, which was formulated in the
sixties by geneticist James Neel [65]. According to Neel,
thrifty genes were favored by natural selection because
they conferred protection against the regular famines
our hunter-gatherer ancestors experienced. In contem-
porary society, however, such genes predispose indivi-
duals to obesity and diabetes [65] (see [66] for a
critique). John Speakman’s ‘predation release hypothesis’
[67], in contrast, argues that early human adaptations
for slimness have been recently displaced by a decrease
in selection pressure, which has allowed relevant genes
to drift towards obesogenic predispositions. Competing
against such gene-based evolutionary accounts were
those claiming environmental causes, such as high-fat

diet and sedentary lifestyle, are responsible for the
immense increase in obesity in affluent societies. This
perspective was radically retheorized in the early 1980s
by clinical epidemiologist David Barker. He detected a
positive correlation between poor conditions in child-
hood, which he measured with infant mortality rates
and birth weight, and later metabolic diseases [68]. His
studies showed that early prenatal exposure to adverse
environmental effects had immediate effects on birth
weight, which created predispositions to late-onset life-
style diseases such as obesity, type 2 diabetes, hyperten-
sion and cardiovascular disease [69,70]. From these
findings Barker formulated his ‘thrifty phenotype
hypothesis’, according to which the fetus reacts to cir-
cumstances in its environment through vascular, meta-
bolic and endocrine adaptations [71].
A flood of epidemiological and laboratory-based ani-

mal studies has strongly supported Barker’s original
claims. Some of this experimentation has shown that
different disease phenotypes can be produced by differ-
ential gene expression [72-75]. This perspective has
been labelled more broadly ‘the developmental origins
of health and disease’ (DOHaD) paradigm [76]. Paedia-
trician and endocrinologist Peter Gluckman and collea-
gues have argued that the thrifty phenotype hypothesis
and DOHaD should be understood as a subset of the
more encompassing processes of ‘developmental plasti-
city’ that allow organisms to adapt to a suite of different
environments with the most suitable phenotypic variant.
The placenta is thought to play the key role in what is
often referred to as ‘fetal programming’, which involves
both structural changes to major organs and the epige-
netic modification of key genetic factors [77]. Some
researchers reject the biologically problematic metaphor
of ‘programming’ because of its connotations of genetic
preformation [78], but in this field it has been adopted
to communicate that the fetus treats the nutrient supply
through the placenta as a forecast for the availability of
food after birth, and prepares for this with a modified
developmental trajectory [72]. The organism adapts
itself teleologically (with the goal of survival) to its
environment, and this adaptability – produced by phe-
notypic plasticity – is an evolved capacity of such
organisms.
Gluckman has explained the long-term effects of the

maternal environment on offspring not simply as
responses to developmental disruption, nor merely as
short-term adaptive responses. He understands them
rather as ‘predictive adaptive responses’ (PARs). Early
environmental cues shift the developmental pathways in
order to match the phenotype to the projected environ-
ment [75]. These PARs manifest their adaptive effects
later in life rather than immediately. The advantage of
such a plastic strategy depends crucially on the accuracy
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of the forecast of the postnatal environment. A thrifty
phenotype with a high ratio of fat to muscle cells, a
highly efficient metabolism, weight-gaining appetite and
exercise regulation may have clear advantages in an
environment with poor nutritional supply. In an envir-
onment with an overabundance of high-fat food, how-
ever, such a phenotype is likely to lead to high weight
gain and an increased risk of associated diseases. Gluck-
man and colleagues name this scenario the ‘environ-
mental mismatch hypothesis’. They thus embed their
developmental explanation within a broader evolution-
ary analysis [79].
While epidemiological studies have been very impor-

tant for detecting strong associations between certain
phenotypes and distinct developmental factors, they are
only guides to the causal bases and potential points of
intervention in syndromes such as obesity. Only in the
last few years have molecular bridges been made
between periconceptual (prior to conception), prenatal
and perinatal (around the time of birth) environments,
long-term changes in gene expression of normal house-
keeping genes, and permanent changes in adult mor-
phology, physiology and behavior [71]. The observed
plasticity in human and non-human developmental tra-
jectories is believed to be achieved largely through the
altered expression of key regulatory genes that regulate
cell number and differentiation early in development,
thus permanently resetting many homeostatic mechan-
isms [71]. These epigenetic factors can play a major role
in weight gain in later life.
The term ‘epigenetics’ was originally coined by Conrad

Waddington as the synthesis of ‘genetics’ and ‘epigen-
esis’ in reference to the interaction between genetic,
cytoplasmic and environmental factors as they construct
the phenotype [80]. In today’s molecular biology, epige-
netic modifications refer to heritable changes in pheno-
type that are not caused by changes in the underlying
gene sequence but arise in dependence on the molecular
modification of the DNA or posttranslational modifica-
tions of the proteins that package the DNA. These
mechanisms programme the time- and tissue-dependent
expression of genes and the differentiation of cells from
their totipotent state as stem cells to their final pheno-
type as differentiated somatic cells of various tissue
types. Experimental evidence in epigenetics has asso-
ciated specific disease risks with environmental exposure
during narrow time-frames. An increased risk for obe-
sity has been clearly linked to maternal malnutrition in
the first trimester [81,74]. In cloned animals, nutrition-
ally challenged maternal environments as early as the
periconceptual and pre-implantation period can lead to
long-term effects on metabolic function [82,83]. In
humans, in vitro fertilization confers a higher risk of
obesity later in life, possibly due to low methylation

(hypomethylation) in culture conditions of typically
methylated and therefore silenced maternal alleles such
as the insulin-like growth factor II (IGF-2) [84].
The most well known evidence for epigenetic changes

in humans induced by maternal malnutrition comes
from the natural experiment created by the famine of
the Dutch Hunger Winter of 1944-1945. A study of sub-
jects exposed to famine conditions, particularly during
periconceptional and early fetal periods, revealed an
association with the hypomethylation of the IGF-2 dif-
ferentially methylated region six decades later [80].
Because the hypomethylated gene is expressed, these
subjects and their children showed a significantly
increased incidence of obesity and diabetes. However,
this hypomethylation was not associated with lower
birth weight, which is instead associated with exposure
to famine in a later prenatal period. This study rein-
forces the supposition that very early development is a
crucial period for establishing and maintaining epige-
netic marks [81].
But these accounts are dependent on maternal malnu-

trition, which is not the case for most mothers in Wes-
tern societies, with the notable exceptions of less
affluent social groups or women following extremely
restricted diets. Experimental evidence points to several
developmentally plastic processes that increase the risk
of developing obesity in an environment with easy
access to high-energy food. One pathway leads from
prenatal malnutrition and – importantly – high gluco-
corticoid exposure due to stress, to an increased sensi-
tivity to an obesogenic environment. Such malnutrition
of the fetus can also be induced by a restricted placental
supply associated with early, late and first pregnancies.
A second pathway predicts a higher risk for obesity later
in life following maternal high-fat and low protein diet,
obesity and diabetes. These antenatal challenges can be
postnatally amplified through infant overfeeding, which
includes the so-called catch-up growth often experi-
enced by low-birth weight children [71]. The most
impressive experimental evidence for prenatal changes
in epigenetic gene expression as a response to maternal
cues involves the glucocorticoid receptor (GR) and the
hypothalamic-pituitary-adrenal axis related to the stress
response. The GR binds glucocorticoid, a hormone
involved in the stress response pathway, which has mul-
tiple behavioral and metabolic functions, including
inflammation and insulin interference. Hypermethylation
and underexpression of GR in the rat brain and liver
results from an excessive exposure to maternal gluco-
corticoids in the womb, as well as from prenatal protein
restriction and changes in maternal care behavior imme-
diately after birth [85,86].
Another early candidate gene for the modification of

epigenetic expression due to maternal nutrition, and in
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preparation for a nutritionally challenged environment,
is the IGF2 gene [87]. Under normal conditions it is
maternally imprinted and hence only expressed from
the paternally inherited allele. A great range of other
genes have been implicated in epigenetic alteration after
exposure to either malnutrition, maternal stress, or an
oversupply of glucose and fat. Many of the long-term
effects experienced by the first-generation offspring have
been inherited by the second, and occasionally even
third-generation offspring [88]. This is not surprising
considering that in females the primary oocytes (egg
cells) develop well before birth, thereby gaining expo-
sure to maternal cues for the next generation. In gen-
eral, epigenetic mechanisms can cause environmental
cues experienced by the parent to shift the offspring’s
developmental pathways, which then modify the pheno-
type in ‘expectation’ of a later environment. This process
is sometimes described as ‘spite the mother – fight the
offspring’ [89].
The potential for finding epigenetic causes of obesity

and other metabolic diseases promises increased chances
of medical and public-health intervention. The PAR
paradigm has shown that the more molecular insight is
gained into the influence of environmental cues on the
phenotype, the more sophisticated an understanding of
gene-environment interactions is needed. Environ-
ments matter in several ways: as immediate versus
long-term effects on gene expression, and as past
gene-environment interactions that strongly influence
present gene-environment interactions. Consequently,
the complex interaction of their combined influences
on a phenotype is what dictates the path for interven-
tion. Two interdependent approaches to reduce the
risk of obesity and related diseases later in life can be
extracted from the PAR paradigm. First, promoting the
health and nutrition of female reproducers may pre-
vent chronic disease in future generations [75]. Second,
intervention can attempt to manage the postnatal
infant in accordance with its prenatal programming.
There may also be opportunities for drug-based inter-
vention. It has been shown in animals that leptin
administration in the sensitive period after birth can
partly reverse the course of development towards obe-
sity [73,90]. What connects these two approaches to
intervention is the biology of epigenetics.
Intervention is enabled by extensive knowledge of the

enzymes involved in the establishment, maintenance,
and removal of epigenetic marks both of the DNA and
its histone proteins, and of the mechanisms that link
environmental cues such as behavior or diet to epige-
netic mechanisms [91,84]. Generally, exogenic influences
such as behavioral or nutritional exposure trigger
specific signaling pathways, which in turn activate
sequence specific elements such as transcription factors,

enhancers, or miRNAs. Knowledge of these pathways
and their adaptive origins may open up possibilities for
both the prevention of gene expression pathways in the
fetus and the correction of already programmed, devel-
opmental responses to early cues. These sorts of inter-
ventions would decrease susceptibility to obesity after
birth [92,93]. None of this will be simply achieved, but
it can be supported by a broad public-health orientation
to intervention that is generally focused on maternal
well-being.

From single-organism to metaorganismal
approaches
It may have seemed as if epigenetic and developmental
explanations of obesity came out of nowhere in the
mid-1990s and contributed a rich vein of insight to obe-
sity studies. But at the end of the 1990s, from yet
another direction, an altogether different account of
obesity emerged. Under the banner of microbiology,
bringing together microbial ecology and genomics, came
the study of gut microorganisms and their functional
effects on human biology. The prevalence of bacteria
such as Escherichia coli in the human gut has been
known since these organisms were isolated and named
after Theodor Escherich in 1885. But only from the
1970s onwards has the contribution of these microor-
ganisms to human physiology and development been a
real focus of attention, beginning with Dwayne Savage’s
[94] estimates of the 10:1 ratio of microbial and human
cells in the human body. Molecular studies throughout
the 80s and 90s determined important contributions
from microbes to human metabolism, the immune sys-
tem and development [95,96], but it took the genomic
era to bring home the true significance of microbial par-
ticipation in human health.
The sequencing of single microbial genomes was

established well before animal genome sequencing, but
the advent of metagenomics – the sequencing of entire
microbial communities in their natural environments
[97] – made it clear that the exclusively human genome
sequence needed supplementing by the sequence of the
human microbiome. The microbiome is the collective
genome of the microbial community dwelling in and on
an organism, and knowledge of the entire community’s
metagenomic sequence (outnumbering human genes at
least 100:1) is considered crucial for a full understanding
at a molecular level of the relationships between human
hosts and their microbial constituents [98,99]. The lar-
gest microbial community in the human body is found
in the gut, and much human microbiomics has focused
there. One of the important early findings of these com-
munity-wide molecular studies of human gut microbes
was the difference between the gut microbiomes of
obese and non-obese hosts. In fact, obesity appears to
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have major implications for the composition of human
gut microbiomes, and vice-versa.
The gut microbiome has co-evolved with humans and

taken on some of the metabolic function necessary to
human survival, such as vitamin biosynthesis and plant
polysaccharide (starch and cellulose) fermentation
[100,101]. Gut ‘microflora’ play crucial roles in the
developing human organism, and contribute to immu-
nological processes (e.g., inflammatory response), endo-
crinological functions, and homeostatic energy balancing
such as energy extraction and fat storage [102,103].
‘Germfree’ mice, raised from birth in sterile conditions,
are significantly thinner than microbially colonized
mice, despite eating the same amounts of food [104].
When experimentally colonized by normal mouse
microbiota, these previously germ-free mice become fat-
ter and attain much higher levels of leptin production
and insulin resistance [105]. This implies that the caloric
value of food is relative to the microbiotic ability to
extract energy from otherwise undigested material [106].
In a feedback loop, diet is ‘imprinted’ on metabolism
through its selective effects on the microbiota [107].
In obese mice and humans, the proportion of Firmi-

cutes (a large and diverse phylum of bacteria) to Bacter-
oidetes (a smaller and less diverse phylum) is greater
than in lean organisms. When these same obese indivi-
duals lose weight, the ratio alters, and becomes closer to
that found in lean organisms [108,104] (but cf. [109]).
Obese (ob/ob) mice, with 50% more Firmicute activity in
their guts, appear to digest more of their food and gain
more calories from it, and the Firmicutes also regulate
host metabolic genes [110,111]. A more detailed investi-
gation of the composition of mammalian gut microbiota
is ongoing, including scrutiny of the interactions
between hydrogen-producing archaea and hydrogen-
consuming bacteria [112,104]. While there is consider-
able microbiotic variation between human individuals, a
core microbiome of metabolic functions is maintained
regardless of the diversity of taxa represented [113,97],
thus implying considerable functional redundancy in the
microbiome. These core functions intersect in very
important ways with host genetics and development.
Humans and other animals experience a developmen-

tal succession of the composition of their gut micro-
biota, driven partly by dietary changes and partly by
differential exposure to microbes, as well as generally by
host genetics [114,115]. Initial colonization of infants is
highly variable – even ‘chaotic’ – but later interactions
between the main bacterial groups, as they attain a com-
position more similar to adults, reaches an equilibrium
that brings about standard developmental effects in gut
formation [116]. Microbes link human breast feeding
and weight gain in poorly understood ways. Children
with developmentally unusual gut microbiota appear to

have predispositions to obesity, gut inflammation and
higher allergy rates [117]. Gut microbes are also impli-
cated in the development of type 1 diabetes, through
epigenetic effects on the innate immune system [118].
Humans who have undergone gastric bypass surgery as
obesity therapy have a microbiomic composition that is
different from both obese and slim individuals [119].
One potential mechanism for such microbially

mediated differences in weight gain is the microbial sup-
pression of Fiaf (fasting induced adipocyte factor) in the
gut. This suppression leads to increased deposits of tri-
glycerides in fat cells [109]. Not only are the microor-
ganisms increasing the energy harvest in the gut, but
they are also affecting the regulation of how this energy
is stored and how the immune system operates
[120,121]. The latter is important because imbalances in
the composition of the microbial gut community can
lead to inflammatory diseases, and such inflammation
can be linked to obesity [122,123]. But the exact rela-
tionships between obesity, leptin, diet, inflammation and
microbiotic variation are still obscure, and a great deal
more work on humans as well as gnotobiotic model
organisms (germ-free animals exposed to specific
microbes) has to be done to work out the mechanisms
and regulatory factors that contribute to microbially
influenced obesogenesis, associated syndromes and their
maintenance. Nor is much known about the effects of
large numbers of viruses in the human gut (also
detected in metagenomic surveys) and whether they
modulate microbial activity.
Currently, little epidemiological research has been

done on microbial community composition and disease
in large populations, although metagenomic techniques
enable such associations to be drawn. One current
study, drawing on the ‘thrifty’ metaphors noted above, is
called the ‘thrifty microbiome’ project. It seeks to under-
stand the role of gut microbiota in producing obese
phenotypes in a genetically similar and well character-
ized population, the Amish [124]. It is recognized that
metagenomic approaches on their own will not be
enough to reveal these host-microbe interactions, and
that they will need iterative extension by experimental
techniques and multiple modes of analysis [119,112].
Although the interactions between microbial, genetic

and epigenetic processes in the generation of obesity
have yet to be illuminated, the identification of a whole
new dimension of obesity factors may enable the devel-
opment of novel diagnostic, preventive and therapeutic
interventions (Bäckhed et al. 2004). A great deal of
nutritional research is focused on prebiotics (non-diges-
tible food used to stimulate existing gut microbes) and
probiotics (live microorganisms as a dietary supple-
ment), but the diversity of products and non-standar-
dized study designs make it difficult to compare the
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efficacy of such interventions [125]. Claims that probio-
tics are causally linked to obesity are deeply disputed
[126]. Perhaps more significantly, antibiotic ingestion
affects the composition of gut microbial communities
and is linked to weight increase in cattle and other ani-
mals, especially if they are exposed to antiobiotics early
in the lifecourse [127]. The treatment of young children
with antibiotics may be playing a role in the obesity epi-
demic. And drug therapies for any disease are regulated
by microbial interactions, so any attempt to predict
pharmacological efficacy has to take gut microbes into
account [128].
Metaorganismal studies of obesity are – of the three

research approaches discussed in this paper – perhaps
the most ‘curiosity’-driven rather than intervention-
driven, in part because of the novelty of the approach
and considerable associated uncertainty. Some gastroen-
terologists urge caution in applying metagenomic findings
to public health policy because so little is known and
obesity effects are obviously driven by a panoply of causal
factors [124]. Nevertheless, such studies are broadening
understandings of physiological processes rather than
narrowing them, and this is happening at the conceptual
level as well as the level of potential interventions.
It is becoming clear to many researchers of obesity

that microbes demand a broader understanding of what
an organism is, and how its interactions with the envir-
onment are mediated [129,100,127]. It is common now
to theorize the trillions of microbes in the human gut in
each and every human as a metabolic organ in its own
right [130]. Metaorganismal approaches also emphasize
different modes of inheritance. Obesity propensities are
not restricted to genetic and epigenetic inheritances, but
are acquired laterally, from the mother and wider com-
munity. This lateral mode of inheritance becomes inter-
woven, of course, with the epigenetic and genetic modes
and the physiological story becomes even more complex
and dynamic. Further complications are introduced with
the evolutionary aspects of obesogenic factors, such as
the complex adaptive and selective processes that struc-
ture microbial communities in the gut [131,132]. What
does seem clear, however, is that increasingly sophisti-
cated understandings of the factors involved proceed
hand-in-hand with a search for increasingly sophisti-
cated interventions, and that in the process, a new, far
more dynamic understanding of basic and applied cate-
gorizations of scientific research is beginning to emerge.

Intervention, integration and translation
These three different approaches to obesity each tell a
partial and poorly connected story of obesogenic
mechanisms. The first approach looks for genetic
causes, employing genome-wide association studies,
whole-genome linkage scans and molecular techniques

to identify the molecular pathways involved. The second
approach uses epidemiological studies, animal experi-
ments and molecular approaches to address gene-envir-
onment interactions that manifest themselves
epigenetically early in life. The third line of inquiry
investigates variations in the composition of gut organ-
isms and their relationship to obesity via epidemiological
association studies, metagenomic techniques and bio-
chemical analyses. All these approaches may have hoped
initially for linear, one-dimensional and unicausal expla-
nations but these were obviously ill-founded hopes.
Assuming simple linear pathways as the causal explana-
tion of disease has produced neither promising preven-
tive strategies nor effective drug treatments for obesity,
as the leptin story shows. While there may be diseases
and biological processes for which multi-level systems
explanations are unnecessary, we focus on obesity as the
exemplar of a disease for which a narrow causal story
and limited range of interventions will not suffice. Obe-
sity, along with many other common conditions, has to
be addressed at multiple levels, including the social
[133,134], and ultimately all three of the approaches
outlined in this paper have had to widen their focus and
begin to construct much more multifactorial cause-and-
effect scenarios. Philosophers of science and medicine
have long argued for the necessity of multilevel explana-
tion (e.g., [135-137], and the era of systems biology and
systems medicine is seeing the gradual implementation
of complex causal accounts of disease.
Even though each angle of inquiry into obesogenesis

has generated a range of more sophisticated understand-
ings, the connections between these three major per-
spectives have barely been investigated. We have
pointed to a few links made between, for example, the
genetics and epigenetics of obesity, or developmental
and microbiological interactions, but this is just the
beginning of developing a genuinely organism-wide and
dynamic life-history understanding of obesity. Such con-
nections need to be made not simply for theoretical
satisfaction, but for the practical benefits that arise out
of greater capacities for the prediction, prevention and
management of obesity. Such aims are part of the trans-
lational agenda of much biomedical research today, and
we suggest that this agenda rests squarely on the
shoulders of research capacities for intervention and
integration. We suggest that what will bring these three
programmes of obesity research together is a systems-
oriented translational undertaking that frames the future
of obesity research as it might be approached by systems
medicine.
Intervention is the ground on which explanations of

biological processes are built. Interventionist science
involves the search for causal-mechanical explanations
of phenomena [138]. Causality, from an interventionist
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perspective, cannot be inferred merely from observation
of a biological process but requires experimental manip-
ulations that take control of one or more variables
[139]. Conceiving of intervention as the core of scientific
practice provides a useful way in which to comprehend
the life sciences in general, and obesity research in parti-
cular. First, an intervention that is successful in one
research setting has to be transferred successfully to
others in order to be maintained as a robust causal
inference. And second, understanding translation as the
successful transfer of that intervention aids the develop-
ment of a broader understanding of translation, in
which knowledge is understood as a practical accom-
plishment. We are not denying that sophisticated under-
standings of biological processes can be built on initially
restricted combinations of techniques, questions and
bodies of data. Very specific questions may continue to
be fruitfully addressed by particular techniques and spe-
cific mechanistic accounts. However, the recent history
of molecular biology, and obesity research in particular,
shows that even as limited approaches succeed, they
generate a requirement for the integration of more data
and approaches in order to answer associated or wider-
ranging questions [140].
This ramification of inquiry is what each of our three

accounts of obesity research demonstrates. For example,
an experimental manipulation of the leptin-producing
pathway, so that it suppresses the glucose production
stimulant, glucogen, and leads to the normalization of
glycemia in insulin-deficient rodents, suggests a potent
therapeutic intervention point [141,142]. But this experi-
mental intervention would need to be reproduced in a
variety of experimental systems (e.g., different animal
models, different conditions of calorie intake) and inte-
grated into a wider body of intervention-oriented knowl-
edge (e.g., insulin regulation). If such an intervention
proves robust, despite its artificial isolation from a wider
system of processes, it may be transferrable to a context
of therapy development. However, as our outline of the
history of leptin research made clear, focusing on a sin-
gle point of intervention is not likely to bring about an
effective and general therapeutic strategy for a broad
condition. As bodies of molecular physiological knowl-
edge have been generated, and multilevel insights into
complex processes such as obesity have expanded, inte-
gration has become the catchcry of a forward-looking
research agenda. This agenda is aimed at the greater
transferability of research findings from one research
domain to another, and the subsequent expansion of
prediction and control this may enable.
Integration has emerged as a major desideratum in an

era of biological practice that is characterized by the
high-throughput production of vast bodies of data
and extensive powers of computational analysis. An

increasingly prominent response to this embarrassment
of riches is systems biology, which mandates integration
at all levels of practice: methods, materials, data, causal
inferences and disciplinary approaches [143-145]. This
new approach is characterised by the effective combina-
tion of experimental ‘wet’ biology with computer-based
analyses and mathematical models [144]. Through the
repeated integration of biological knowledge, predictions
made from mathematical models can be tested experi-
mentally, the models modified accordingly, more data
integrated, and at each step, systems-level insight
improved [146].
Integration cannot stop in the laboratory, however,

and one of the justifications of systems biology is its
mooted ability to connect more closely and immediately
with ‘translated’ benefits. The ‘systems medicine’ mani-
festo is a prime example of such an integration, where
efforts are made throughout the whole research process
to integrate systems-biological insights with clinically
applicable results [147-149]. From this perspective, con-
ditions such as obesity have to be understood as the
consequences of complex interactions between networks
of molecular activity and environmental factors. These
understandings are deemed to require iterative research
strategies taking multiple levels of data into account
[150-152]. The main goal for these systems-oriented
practitioners is not exclusively understanding or expla-
nation but the prediction and control of systems so that
basic and applied scientific practices are not separated.
‘Knowledge’ in such a research context means being
able to intervene in a particular process and affect its
outcome in a variety of contexts. Even where a systems
approach does not immediately lead to increased con-
trol, it produces a better understanding of the system.
It might be thought that intervention, with its focus

on linear cause-effect relationships, is at odds with sys-
tem-level integration. For a therapeutic intervention to
be effective from a systems point of view, it should be
based on multilevel insights that pervade the whole
organism, its life-course and environment [153,139]. Yet,
any experimental or therapeutic intervention, no matter
how broadly informed and carefully conducted, is going
to operate as a simplified modification of self-maintain-
ing multidimensional biological processes. But just as
experimental interventions focus on the manipulation of
particular variables in order to understand causal rela-
tionships, systems-biological manipulations focus on
nodal points of intervention from which wider system
effects can be predicted [154,151]. Manipulation of these
nodes is achieved on the basis of knowledge about the
interconnections between and within systems. Identify-
ing the multilevel effects of nodal interventions allows
better prediction and control not just of that node but
those connected to it. Nodal interventions must also
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take steps to predict and avoid side-effects and compen-
sations, which are serious problems for single-pathway
pharmaceuticals that attempt coarse interventions in
dynamic systems [155]. The aim, therefore, of systems
biology and systems medicine is to increase the effec-
tiveness of experimental and therapeutic interventions,
rather than simply extend them to multiple levels and
aspects of the system. By framing complex processes
pragmatically, translation brings together integration
and intervention and potentially resolves some of the
apparent contradictions between them.
Translation is often discussed as a key issue for con-

temporary biosciences. It is usually conceptualized as
the transformation of knowledge into useful products
[156-158]. In medicine and clinical practice, where
translation is a frequently discussed process, it is
described as the strategies that move research ‘from
bench to bedside’ [159,160]. Although there is consider-
able dispute about how to conceptualize and implement
translation, we suggest it cannot be restricted to the lin-
ear transition of research from lab to clinic or industry,
because of the impoverished account of scientific prac-
tice on which this definition relies. Rather than discuss-
ing translation in this restricted sense, we urge a
broader understanding of translation as the transferrable
achievement of intervention. Going back to obesity
research for exemplification of this point, it is scientifi-
cally desirable that a laboratory-based biochemical inter-
vention in, for example, leptin and insulin interactions
in mice, is potentially transferrable to other experimen-
tal systems and other disciplinary approaches. And ulti-
mately, genetic and biochemical understandings of
leptin and insulin interactions have to be integrated into
epigenetic and metaorganismal knowledge, or the suc-
cessful transfer of intervention will fail. The rationale
here is not purely theoretical or philosophical (i.e.,
whole systems are the best objects of inquiry) but prag-
matic: concerned with the transfer of a particular inter-
vention into another context.
Systems biology is not, in this scenario, a replacement

paradigm for the reductive investigative strategies of the
molecular sciences but their necessary extension in cer-
tain inquiries. As we have noted, some conditions and
their associated explanations and interventions may not
require full systems-biological and systems-medicine
approaches. Systems biology and medicine seek to inte-
grate not only approaches and data, but also discovery,
analysis and therapy in a variety of contexts. We suggest
that this confluence is where the true meaning of transla-
tion lies: in the capacity to transfer interventions from
context to context during the pluralistic investigation of
a system. These contexts are simultaneously rather than
sequentially producers of experimental as well as applica-
tion-oriented interventions. A therapeutic intervention,

such as leptin replacement, will not achieve much
in organisms that are not leptin-deficient but leptin-
resistant. But this very failure of therapy can be conceived
as a process manipulation and transferred into further
experimental contexts to enrich understanding of success
and failure of that intervention. Translation also encom-
passes the integration of what might be thought of as
more philosophical perspectives on scientific practice.
The obesity research narratives we have told show how
initially fruitful reductionist strategies are being trans-
lated into the investigation of nonlinear interactions
between components in multidimensional systems. Such
system-oriented insights are restricted at first, but can
eventually be transformed into more dynamic, interactive
representations of the system under study, as each of our
three bodies of research shows. In this framing of con-
temporary biological practice, obesity research is a proto-
typical example of the requirement to understand the
dynamic of science in translational terms. By ‘require-
ment’ we mean not simply something mandated from
above (e.g., by funders, health policy, and profit incen-
tives) but as a descriptive and normative account that
encompasses scientific practice in today’s biology.
Thus, from the perspective we advocate – which is

highly compatible with several philosophical positions
on pluralism, pragmatism and intervention – transla-
tional activities occur at every level of scientific practice,
such as when predictions are translated from one disci-
plinary or explanatory domain to another through trans-
ferable technologies and generalizable model-based
insights. These cumulative processes of translation are
always concerned with intervention, whether in experi-
mental systems, clinical trials or product development.
Thinking in this way about translation clearly challenges
the distinction between basic and applied research –
already argued by many commentators to be a false
categorization [161-163]. A broad conception of transla-
tion also includes fundamental theoretical changes and
the exploration of new avenues of research occurring in
the same contexts in which new interventions are being
developed and applications anticipated. Such interven-
tions thereby become part of the iterative cycle of trans-
lation, further intervention and reintegration.
Very clearly, therefore, obesity research is a field that

can contribute to deep insight in the philosophy of
science and medicine. As our outline of the three
streams of research shows, philosophical accounts of
causality, intervention, pluralism and explanation are
given new and pressing reasons to be used as tools of
analysis in regard to biomedical research programmes.
Philosophers will gain valuable understanding of systems
perspectives on health and illness, as well as the process
of translating scientific knowledge and tools from one
context to another within and between areas of research
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and application. These philosophical insights have the
potential to contribute different levels of insight to
emerging areas of bioscientific and biomedical research
even as philosophy develops novel concepts and frame-
works to accommodate this new knowledge. By thinking
of the relationship between science and philosophy of
science as interactive and mutually informing (e.g.,
[164]), greater joint capacity can be developed to
address research impact, critical limitations, and new
modes of scientific practice. It should not be necessary
to argue (although sometimes the need is felt e.g., [165])
that an informed philosophical analysis of the science is
also required for better ethical analysis. We suggest,
therefore, that understanding the epistemic and ethical
complexities of obesity research will illuminate the
many practical scientific issues arising from the develop-
ment of therapeutic interventions and the policies they
are likely to inspire. This illumination will have conse-
quences for other fields of medical and scientific
research, thus resulting in further mutually beneficial
interplay between science, medicine and their philoso-
phical studies. Obesity, in all its dimensions, is able to
expand philosophical discussion while the philosophy of
science adds new angles of discussion to the study of
obesity.
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